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conformational relaxation in these molecules, which contain 
some classical problems of conformational analysis. The 
structures were investigated with the Allinger MMl force 
field,2a which provides rapid access to a large range of com­
pounds, including hetero-substituted ones. Some recognized 
shortcomings of the MMl version6 will not alter the conclu­
sions of the present investigation, which aims more at relative 
energy distributions than at accurate minima. In view of the 
particular sensitivity of nonbonded interactions to parame-
trization ambiguities we have also used an equation for the 
evaluation of nonbonded steric forces4 which is based on the 
Lifson-Warshel force7 field. 

Substituted Cyclohexanes and Bicyclo[2.2.1]heptanes. Strain 
energy redistribution by relaxation is well known for axial 
substituted cyclohexanes, where repulsion between the sub­
stituent and 1,3-diaxial hydrogens is not solely the destabilizing 
factor.5 Although numerical values dissecting the different 
strain contributions depend on the potential functions and 
parametrizations used in the force fields,2'6 it is not disputable 
that the gauche hydrogen effect between the equatorial hy­
drogen at Ca (H8 in 1) and the equatorial hydrogen at CjS (H9 
in 1) can be a significant factor destabilizing the conformer 
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Abstract: Molecular mechanics calculations on the title compounds demonstrate the redistribution of steric effects of concep­
tual single origin over the whole molecule. Sterically induced substituent effects on 13C NMR shifts are obtained as the sum 
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little strain energy variation in comparison to the binding energy to steroid hormone receptors. 

0002-7863/79/1501 -7195S01.00/0 © 1979 American Chemical Society 



with an axial substituent X. This gauche hydrogen repulsion, 
however, is sizable only for compounds with bulky substituents; 
thus the outward bending of CH3 in 1 will push H8 substan­
tially toward H10/18, thus transmitting a classical reflex effect 
as found recently with 2,2-dimethylcyclohexanes.8 Confor­
mational relaxation also is manifested in the quantification of 
the steric forces F4 on 13C NMR shielding, where, e.g., for the 
axial methyl group in cyclohexane only 75% of Y.F o n C>-H 
are calculated to be due to the interaction between H20 and 
H11 /15 in 1. If the "ideal" nonrelaxed structure5 for 1 is used, 

the steric forces obtained on C7-H(3/15) are exaggerated by 
500% (F- 1.5 mdyn instead of 0.30 mdyn). In the more 
strained 7-methylnorbornane 2 the analysis of steric forces F 
on C2/3-H4 yields an even more delicate balance of single 
forces after full relaxation of the structure: only 71% stem from 
"direct" H20---H11/12 interaction, another 40% from 
C7 • • • Hl 1/12, 12% from C8 • • • Hll /12, and -23% from 
C6 • • • H14 forces. The latter quantity is negative since the 
relevant angle 04 is <90° (55°); for similar reasons (6 =* 90°) 
the interactions Hl9 • • • H14 are below 2%. Further numerical 
examples can be found in supplementary tables.4'9 

Comparison of Cyclohexane and Bicyclo[3.3.1]nonane. The 
potential surface of cyclohexane itself has been studied with 
particularly suited force fields10-1' and no.attempt is made to 
improve the numerical results. Figure 1 aims at visualizing the 
chair-chair interconversion; transition state TS is obtained by 
MMl as slightly twisted half-chair (twist angle <pjs = 10 ± 
2.5°,£'rei.TS = 10.7 ±0.1 kcal/mol), the intermediate as twist 
boat TB with £rei.TB = 5.33 kcal/mol. These values come close 
to the results of the improved MM2 force field6a as well as to 
Ermer's1' calculation based on the Lifson-Warshel force field7 

(VTS 13,6a 130;11 £rei.TS = 10.56a or 11.07" kcal/mol; 
£rci.TB = 5.5 kcal/mol6a). 

While cyclohexane shows an energy surface with distinct 
minima and maxima, the picture for bicyclo[3.3.1]nonane is 
altered in an at first sight unexpected way (Figure 2).9 Origi­
nally we expected for this bicyclic compound an increase of the 
chair-boat inversion barrier (3, CC =̂? CB)12 owing to the 
additional bridge in this cyclohexane which eventually should 
render twist forms more difficult. The unusual flat surface 
obtained by the force-field calculation is a direct consequence 
of conformational relaxation with the aid of the additional 
bridge which can accommodate considerable twisting under 
actual relief of torsional strain and nonbonded interactions. 
Thus the rather low-lying transition state (5 kcal/mol) will be 
populated with symmetric Cs as well as with strongly twisted 
Civ forms. Ill-defined energy surfaces must be expected for 
molecules where conformational relaxation extends over larger 
parts and in which ground states of higher energy come rela­
tively close to transition states. Some discrepancies between 
force-field results13 are in fact due to the occurrence of these 
flat surfaces. 

11/3-Substituted Estrenes. Geometries and 13C NMR shifts 
in these pharmacologically important compounds 4 can be 
compared to those of axial-substituted cyclohexanes which 
should provide insight into the conformational transmission 
of reflex effects between X and axial H or CH3.

 13C shifts of 
Ca to C5 (Cl 1, C9, C12, C13, C8, ClO, C18) in 49 are similar 
to those in corresponding cyclohexanes.8 Exceptions such as 
stronger deshielding of Cl 1 for X = Me are understandable 
on the basis of MMl-calculated9 bond-angle increases (e.g., 
for Me-Cl 1-C9 by 6°); the same reasoning can be applied to 
the difference of /3 effects on C9 and C12.9 The sterically in­
duced shielding on C8 and ClO provides another test for the 
correlation with Y.F4 (Figure 3) for which up to ten single F 
contributions9 have to be considered. 

11/3-Substituted lynestrenoles have also been chosen for the 
present investigation because a series of excellent X-ray 
analyses for these compounds was available.14 Comparison of 
the corresponding internal coordinates in the crystal and the 
MMl minimized geometries revealed substantial differences 
in C-C bond lengths (up to 0.04 A), CCC bond angles (up to 
3°), and torsional angles (up to 10°).9 The reflex effect of the 

11/3 substituents with other axial atoms produces distortions 
of the C ring chair, characterized by torsional angles of 52° 
for ip\ (C9-11-12-13) and of 55° for ip2 (C8-9-11-12) in the 
crystal of 4, X = Me.9 Since the MMl calculated geometry 



Schneider, Gschwendtner, Weigand / Empirical Force Field Calculations 7197 

[ppmj 

- 8 . 

- 6 -

-U 

-Z-

D-

© / 

y 
© / 

/ © 

S t E r 
[ k c a l / M n l , 

D.O - D . 1 - Q . 2 - 0 . 3 - D . I i F [ d y n . 10 j 

Figure 3. Correlation of methyl group substituent effects on syn-7-carbon 
shielding with corresponding steric forces ]TF. Points I, 2, and 3 denote 
7-, 2-exo-, and 2-endo;methylnorbornanes; 4, a methylcyclohexane; 5, 
ClO; 6, C8 in I l/3-methyllynestrenole. 
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Figure 4. Potential surface of 11/3-methyllynestrenole as a function of <p\, 
ip2- K, crystal structure; other explanation, see text. Contour distances 0.5 
kcal/mol. 

(M in Figure 4) showed 52 (<pi) and 50° (<p2) the potential 
surface was constructed and established a large range of pos­
sible conformations with no or small energy differences (Figure 
4). The asymmetry of the surface reflects the repulsion between 
11/3-Me and 13-Me (C18). Reflex effects'5 in cyclohexanes 
and in steroids16 can be characterized by the angle p8 between 
the corresponding axial bonds and are found to be fairly similar 
(Table I).9 There is, however, a difference between the cy-
clohexane and the steroid moiety in that in the more rigid 
skeleton the angle p can be reached by more bond angle and 
less torsional angle variations.9 Model calculations on 
l,l,3a-trimethylcyclohexane in fact indicate that distortions 
which require, e.g., 0.94 or 8.61 kcal/mol in the steroid (points 
3 or 1 in Figure 4) will require only 0.85 or 5.10 kcal/mol, re­
spectively, in the corresponding 1,1,3a-trimethylcyclohexane 
model.9 

The generation of a convex shape on the steroidal ft side by 
the reflex effect of 11/3 substituents has been found in sys­
tematical X-ray analyses'4 and could be related to an increased 

B. 5 rM 7 .5 6 .5 r [ B ] 

Figure 5. Strain energy in 11/3-methyllynestrenole as a function of skeleton 
bending, characterized by the distance r between 3a-H and C20. 

Figure 6. Two forms of 11/3-methyllynestrenole differing by only 1.7 
kcal/mol. 

Table I. Calculated Reflex Angles p 

between bonds 
parent 

structure p, deg 

lynestrenole, 
lynestrenole, 
cyclohexane, 
cyclohexane, 

methyl-

11/3X = H 
11/3X = CH3 

1,1-dimethyl-
l,l,3a-tri-

C13-C18/C11-H 
CI3-CI8/CH-CH3 
C1-CH3/C3-H11 
CI-CH3/C3-CH3* 

4 
4 
1 
1 

11.6 
24.4" 
13.4 
29.4 

a A value of 24.3° is obtained from the crystal structure. * CH3 
instead of Hl 1. 

binding to the corresponding receptor.14 ' '7 In order to inves­
tigate the energy needed for such an overall bending a com­
puter experiment was designed, in which the strain energy was 
calculated as a function of the distance r between 3aH and 
C20 (Figure 5).9 In the force field minimized structures the 
distance difference for X = H and X = Me is Ar = 0.095 A; 
in the crystal structures, however, Ar = 0.377 A. Yet the ad­
ditional strain energy (for Ar = 0.377 A) would require only 
0.1 kcal/mol, and even a strong bending (Ar = 1.2 A) as de­
picted in Figure 6 not more than 1.7 kcal/mol. This is much 
less than the binding energies to steroid hormone receptors 
( M 2 kcal/mol17), which consequently could impose sub­
stantial bending on the seemingly rigid steroid by an induced 
fit mechanism.18 

Conclusions 

Conformational relaxation considerably extends the scope 
of geometries, energies, and interactions to be evaluated in 
structure/property investigations. This is particularly true for 
strongly coupled systems such as bicyclic or steroidal com­
pounds and for steric substituent effects which necessarily 
generate distortions that tend to equilibrate over larger mo­
lecular areas. Energy differences between selected geometries 
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are often very small, even in comparison to vibrational am­
plitudes, which can lead to serious difficulties in the localization 
of minimum geometries. The results emphasize the need of 
explicit crystal lattice energy considerations19 in the use of 
X-ray analyses for evaluating conformations or reactivities20 

of "free" molecules. In relating effectors to biological receptors 
several conformations have to be considered also for seemingly 
rigid molecules; the then urgent question on the origin of se­
lectivity in biological recognition must be seen against the 
background of the small energies needed for conformational 
changes in small molecules under full relaxation. 

Experimental and Computational Details 
All calculations have been performed in Fortran on the Telefunken 

TR 440 of the Rechenzentrum der Universitat des Saarlandes. The 
parametrization of the force field is given in the literature.23-7 Potential 
energy surfaces were constructed by interpolation between energy 
minimized points (denoted "+" in Figure 4) obtained in 10-20° steps 
of torsional angles (see Figures 1 and 2); some transition states and 
ground-state minima were traced in 5° steps. The usual limit of 2-5 
cal/mol for the minimization was increased to 20 cal/mol in the ex­
ploration of higher energy states (Figure 4). Interpolations were 
performed either manually (Figure 4) or by a program INTERPOL 
which fits stepwise three energy-minimized points to paraboloid 
curves. 

For the simulation of the steroid bending an artificial attraction 
function was imposed on 4, X = Me, between 3a-H and C-20, which 
had no influence on the strain energy in the minimized structures. 

13C NMR spectra were measured in the PFT mode at 22.62 MHz 
on Bruker instruments HX 90 or WH 90 in CDCl3 as solvent (~20%) 
and with Me4Si as internal standard, if not noted otherwise; digital 
resolution was usually ±0.025 ppm. 
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